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1. Introduction

Spectral methods yield exponential convergence in the approximation of a globally smooth function
[3,4,13]. However, if the function has a local discontinuity such that the function is only piecewise smooth,
spectral accuracy is no longer manifested as the convergence is at most O(1) in the L., norm. This is known
as the Gibbs phenomenon. If the function has a discontinuity or is non-periodic in the given domain, its Fou-
rier representation shows spurious oscillations near the discontinuity or the domain boundaries. These oscil-
lations may deteriorate the stability when applied to the solution of time dependent problems. Several
methods have been developed to deal with the Gibbs phenomenon. These methods roughly fall into two dif-
ferent theories; projection theory and direct-inverse theory.

Projection methods include spectral filtering methods [12], adaptive filtering method [7], spectral mollifica-
tion methods [24], and the Gegenbauer reconstruction method [14,15]. Spectral filtering or spectral mollifica-
tion methods map the original spectral approximation into the filtered space. The adaptive filtering method
and the spectral mollification technique often utilize optimal filtered spaces. The Gegenbauer reconstruction
method projects the spectral data with the inherent Gibbs phenomenon onto the polynomial spaces which sat-
isfy the Gibbs complementary condition [14]. Direct-inverse methods include Fourier-Padé method [8], the
inverse polynomial reconstruction method (IPRM) [17,18,22] and the statistical filter method [23]. The Fou-
rier-Padé and the IPRM seek the reconstruction of the given spectral data by inverting the corresponding
transformation matrix. We provide the essential aspects of the IPRM.

Suppose that f(x) is analytic in x € [—1, 1] but not necessarily periodic. Let fy(x) be its finite Fourier rep-
resentation and be given a priori such that,
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where j‘ + are the Fourier coefficients defined with the Fourier inner product
fi = (f(x),exp(iknx)), / £(x) exp(—ikmx) dx. (2)
We seek a reconstruction, f,,(x), in a polynomial basis set, {¢,(x)|/ =0,...,m}, that is,

x) = ig,w), 3)

where g, are the expansion coefficients and ¢,(x) is a polynomial of degree /. The polynomial set
{p,(x)|l = ,m} can be either orthogonal or non-orthogonal and are often chosen as the Gegenbauer
polynomials C’( ), orthogonal with weight function w(x, 1) = (1 — x2)*~ 2 that is

/1 w(x, 2)CH(x)Chdx = \/EC*(I)M(SM,

i NG
where I'(2) is the Gamma function and
I'(l+24)
A 1) =
S Ira)

[1,16]. These have often been the polynomials of choice for the Gegenbauer reconstruction method [14] and
the IPRM [17,22]. For the Gegenbauer reconstruction, they satisfy the important Gibbs complementary
condition [14]. As discussed at length in the previous papers [17,22], the IPRM is 1ndependent of basis set
[22] and one can use any polynomial set such as the Legendre polynomials, L;(x) = CZ( ), or the Chebyshev
polynomials, 7;(x) = C}(x).

The expansion coeflicients are obtained by making the residue between the projection of _]7,,1 (x) in Eq. (3)
onto the Fourier space and the Fourier representation, fy(x), of the original unknown function f(x) orthog-
onal to the Fourier space. This results in equating the Fourier coefficients of f,,(x) and the given Fourier coef-
ficients £ such that

(fu(x),exp(iknx)), = fr, k=—N,...,N. 4)
With the expansion of ]’m (x) as in Eq. (3), Eq. (4) yields the linear system

W.g=f, (5)
where g is the column vector composed of m + 1 expansion coefficients, i.e. g = (go,. .-, gm)T and f is the
column vector composed of 2N + 1 Fourier coefficients, i.e. f= (f Nye-- ,‘]A‘ N)T. The matrix W is defined as

the transformation from the polynomial space to the Fourier space, i.e.

Wi = (¢,(x),exp(iknx)) / ¢, (x) exp(—ikmx) dx. (6)

The Legendre polynomials are predominantly used in this paper as the matrix W is known exactly for this
choice. Jung and Shizgal [17] showed that the square transformation matrix with m = 2N is non-singular.
Thus, the expansion coefficient vector g is given by

g = W71 ! f? (7)
and the reconstructed function is calculated from Eq. (3).

Although the IPRM is accurate for small N (see Features 1 and 2 discussed later) it was shown that the
matrix W [17,20] is ill-conditioned as the total number of Fourier modes 2N + 1 increases, resulting in the
exponential growth of the error once round-off errors begin to be dominant. In fact, the condition number
of W is increasing “‘exponentially” fast. The numerical examples with the Chebyshev or Legendre basis
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functions [17,20] showed that the maximum error L., := max_ . |f (x) — /. (x)| decays exponentially. How-
ever, with increasing &V, L., decreases to some minimum value at N ~ N, and then increases exponentially for
N = N,. For example, for the function f(x) = x, the L., error is approximately machine accuracy, ¢, with
m = 1. As m(= 2N increases, the error grows until it becomes O(1); (Fig. 4 of [17]). Thus, although the inverse
method is very accurate and exact when f(x) is a polynomial, the method yields only O(1) for N > N, which
is the same order of accuracy as fy(x). The exponential growth of the L., error for large N was originally
attributed to the exponential growth of the condition number x(W) of the transformation matrix W
[17,20]. The main objective of this note is to reconsider the increase of the L, error for N > N, and report
a modification of the IPRM that inhibits this behavior.

The success of both the projection and direct-inverse methods is that they reconstruct the spectral approx-
imation with high accuracy in sufficiently smooth regions or in the region sufficiently far from the discontinu-
ity. However, the crucial point is the convergence behavior near or up to the discontinuity points. Fourier
filtering methods and spectral mollification methods intrinsically yield only O(1) convergence near the singular
points although one can obtain fast convergence in the smooth region from the given Fourier data. This is
because these methods still use the Fourier space where the original spectral data is obtained. The Gegenbauer
reconstruction method, and IPRM and the Fourier-Padé method utilize polynomials and rational functions
respectively, to reconstruct the function represented with the Fourier data. By seeking a reconstruction in a
different space, these methods obtain fast convergence even near the discontinuity. Here we refer to the reso-
lution of the Gibbs phenomenon to the methods which recover spectral convergence from the Fourier data up to
the discontinuity. These methods are different from the filtering or mollification methods as they overcome the
O(1) convergence up to the discontinuity if the exact location of the discontinuity is known. However, the
accurate reconstruction with these methods near or at the singularity are very sensitive to the numerical con-
ditioning of the projection or inversion operators. As the number of the given Fourier data 2N + 1 increases,
the accuracy in the interior region away from the singularity is highly enhanced, but the accuracy near the
singular points decreases if N is larger than a certain value.

Gelb [9] discussed the round-off errors associated with the Gegenbauer reconstruction method. In [9], it
was shown that the main source of the problem comes from the exponentially increasing value of the Gegen-
bauer polynomial C/(x) at x = +1 as 4 and / increase while the corresponding expansion coefficients decay
also exponentially. Boyd [2] studied more extensively the ill-conditioning of the Gegenbauer reconstruction
method in connection with the Runge phenomenon and showed that the original Gegenbauer reconstruction
method is not free of round-off errors even though the parameter 4 is optimally chosen such that a sufficiently
small ratio of order m to N is ensured. Also he pointed out the lack of convergence of the expansion which
behaves as a power series for high values of 1 resulting in the non-convergence of the Gegenbauer method for
high values of m and /. In fact, for A = aN and m = N with o, f < 1, it is inevitable for the Gegenbauer
method to have poor convergence for arbitrarily large N. Gelb and Tanner [10] used the Freund polynomials
with the weight function w(x) = exp(—cx*") for n € Z™ as an alternate Gibbs complementary basis (termed a
robust Gibbs complementary basis) to overcome the ill-conditioning of the projection matrix from the Fou-
rier to the polynomial spaces. With this new polynomial basis, the convergence results have been shown to be
spectral even for large N as the theory predicts. The key feature of the new robust Gibbs complementary
basis is that the weight function becomes wider as N increases while the original Gegenbauer polynomial
has a weight function which becomes narrower as N and consequently /4 increase. We here note that non-clas-
sical polynomials with arbitrary weight functions including Gaussian type weight functions were utilized for
the Gegenbauer reconstruction method, and provide better convergence than the Gegenbauer polynomials
[22].

Driscoll and Fornberg [8] demonstrated that the inversion of the transformation matrix (denoted by matrix
Cin [8]) from the Fourier to rational spaces is ill-conditioned and thus limits the L. error to no less than 10~
in double precision (see Fig. 6 in [8]). It appears to be very difficult to obtain the Padé polynomial coefficients
to machine accuracy. Min et al. [19], also showed that the Fourier-Padé method provides for automatic detec-
tion of the edge locations (poles) but the convergence near the poles is rather slow in practical applications.

In this note, we first use Gaussian elimination to solve the linear system obtained with the IPRM. The
expansion coefficients of an analytic function expanded in Legendre polynomials decay exponentially. We
solve the linear equations, Eq. (5), with Gaussian elimination and partial pivoting which transforms W to
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an upper triangular matrix U [6,11]. These same algebraic procedures transform the vector of Fourier coeffi-
cients, f to a new vector h. We show that the variation of the components of the new vector, /i, decay spec-
trally and justifies the truncation of the components just below machine accuracy. This simple procedure
prohibits the growth of the L, error. We then show numerically that the L., error with the IPRM decays
exponentially with N without any growth.

The structure of this paper is as follows. It was previously suggested [17,20] that the exponential growth
of the error arising from round-off errors is due to the exponential growth of the condition number of the
matrix W. In Section 2, we discuss the main features of the IPRM and the ill-posedness of the transforma-
tion matrix W and show that the direct inversion yields the growth in L., error. As explained earlier, we use
Legendre polynomials as W can be written analytically for this case as well as Gegenbauer polynomials. In
Section 3, we discuss the truncation procedure of the vector h the RHS of the linear equation following
Gaussian elimination. A summary is presented in Section 4.

2. Main features of the IPRM

As discussed in the previous papers [17,22], the IPRM has the following important properties (1) it is exact
if the given function f(x) is a polynomial, that is, if f(x) = )" (g,¢,(x), the expansion coefficients g; of the
reconstructed function f,(x) are determined exactly such that,

for 1=0,...,m,
~ {gl or ) m (8)

&= 0 forl>m.

(2) The method is independent of the basis set, that is, the final inverse reconstruction is uniquely determined
regardless of the polynomial basis used. If /! (x) and f2 (x) are the reconstructions with two different basis
functions ¢,(x) and y,(x), respectively, then

fux) = 1, (0), ©)

for m = 2N and f! (x) and f2 (x) have a non-vanishing maximum polynomial order m. For this reason, we can
choose any polynomial set for the inverse reconstruction; (3) The method yields spectral convergence for a
single domain, that is,

Loo = max |f(x) = fu(x)| < Cg™, (10)
where C is a constant independent of N and 0 < ¢ < 1 and « > 0. Here o is function dependent. Here we note
that spectral convergence of the IPRM, Eq. (10), has been demonstrated numerically and the proof was given
for the finite Fourier space [17]. The full proof of spectral convergence is under consideration and the current
note focuses only on the numerical issues of convergence.

The numerical results with the Gegenbauer polynomial basis functions show that the L, error decays with
N up to some N ~ N, and then grows exponentially with N due to round-off errors as discussed in the Intro-
duction. The behavior was demonstrated for different f(x) (see for example Fig. 4 of [17]), and also shown
later in this paper (see Fig. 2). From these results we thus note two major characteristics of the variation
of the L., error with N; Feature 1, and Feature 2. These features are due to the round-off errors and this note
aims to resolve these features in the inverse reconstruction, especially Feature 2.

e Feature 1: For a given computing precision, €,,, define L." as the minimum error for VN;

L™ = min L (N).
N=0,1....
Then there exists a minimum L™" > ¢, for each f(x) and which occurs for N ~ N,,.
e Feature 2: Once the L., error reaches L™" at N ~ N, the L, error starts to grow exponentially for N > N,,.
Here note that the different behavior in the L, versus N curves for N > N, depends on the nature of the
round-off errors that arise in the inversion of W for different basis sets.
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In order to look at the ill-posedness features of the IPRM, we consider in some detail the spectral conver-
gence of the IPRM as given by Eq. (10).
Assume that f(x) is analytic in x € [—1, 1] such that it can be expanded with the infinite Legendre series, i.e.

Flx) = igm[(x), ()

where L;(x) is the Legendre polynomial of degree / and g,(x) is the corresponding expansion coefficient. Here
note that g, # g, in general. Then from Egs. (10) and (11),
L = max |£(x) = Ful®)] = max > (g —2)Lix) + > giLi(x). (12)

—1<x<l —1<x<1
o <=0 1=m+1

We define the vector g = (g, ...,g,) and the matrix W¢ and the vector g,
W?k:W/k; —N<k<N, l:m—|—1,7
gi=g, l=m+1,...
Then using the definitions of f, Eq. (2), and g we can write Eq. (5) in the form
f=W.g+W.g (13)
Thus from Eq. (7) we have
E=V-W.g+V.-W.g, (14)
where V is the inverse matrix of W numerically evaluated with some known inversion algorithms, that is,
VAW
Then from Eq. (12), and using |Z;(x)| < 1, VI, we have
Lo <llg—gll + gl =llg—V-W-g—=V- W g, + g,
<llg=V-W-gl, +[[V-W- g, + llg°ll, < llg =V -W-gll, + (IV- W, + Dlig"]],- (15)
Here || - ||, denotes the vector or matrix 1-norm. If V.= W' exactly, the first term on the RHS of (15) vanishes
and we find that the convergence of the IPRM is solely determined by ||V - W¢||, and ||g°||,. It is well known
that ||g°||, decays exponentially if f(x) is analytic in x € [—1, 1]. Our numerical results in this and previous pa-
pers with the IPRM suggest that the errors decay exponentially with N as given by Eq. (10). Thus ||V - W[
decays or at least grows slower than ||g°||, decays. Since the second term decays fast, the first term on the RHS,
lg — V- W-g|,, is the main source of the ill-posedness of the IPRM.
Now consider the inverse reconstruction of a simple test function f(x) = x with Legendre polynomials to

clearly see the ill-posedness of the IPRM. By definition, g° = 0 and g = (0,1,0,...,0)", and from Eq. (15), we
have

Lo <|g=V-W-g|, +(IV-W, + 1)]lg"ll, (16)
=lg-V-W-gl
<I=V-W|lgll, = [T-V-W|,. (17)

It is interesting that the decay or growth rate of the L., error for f(x) = x is determined only by W and its
inverse. The RHS of Eq. (17) measures the error of the inverse matrix V. Since the error of the inverse matrix
is roughly given by the product of the condition number x of W and machine accuracy €;,, we have

L, <|I=V -W|, < deyx(W), (18)

where A is a constant independent of N. From Eq. (18), we know that L, error is bounded by the condition
number of W.

Fig. 1 shows the ill-posedness features of the IPRM. Fig. 1(A) shows the singular values of W for N = 64.
As shown in the figure, the smallest singular value of W is already as small as machine accuracy ¢;, which
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Fig. 1. (A) The singular values of W for N = 64. (B) The L, errors and ¢,,k(W) versus N. For figure (B) the test function f(x) = x is used.

yields a large condition number and the linear system Eq. (7) is ill-posed. For the inversion of W, MATLAB®
backslash operation (*\’) is used. Here we note that the MATLAB® backslash operation uses Gaussian elim-
ination. Fig. 1(B) shows the variation of L., and the value of ey k(W) with N on a logarithmic scale for the
inverse reconstruction of f(x) = x. For the reconstruction, the Legendre polynomials and the exact f and W
are used. For Eq. (18), we choose 4 = 1 and ¢, = 107'%. As shown in the figure, the L., error and the condition
number grow exponentially and both have similar growth rates as Eq. (18) indicates. Let

Loc - Clea

and
K(W) = C2qN7

where p, g > 1 and C; and G, are constants. From a linear fit to the numerical results of Fig. 1(B), we find that
p~18 ¢g~20,

which shows that the estimate Eq. (18) agrees with the numerical results for f(x) = x. Eq. (18) and Fig. 1(B)
shows that the condition number k(W) accounts for the exponential growth of the L., error.

3. Gaussian elimination with truncation

For the numerical experiments, we use MATLAB® ‘inv’ command for the direct inversion and backslash
command ‘\’ which uses Gaussian elimination with partial pivoting to solve Eq. (5). Both inversion algorithms
show the ill-posedness features, Features 1 and 2.

Fig. 2(A) shows the exponential decay (N < 12) followed by the exponential growth of L., versus N for the
inverse reconstruction of f(x) = cos[l.4n(x + 1)] with Legendre polynomials. The error for large N remains
O(1). Fig. 2(B) shows the pointwise errors (N = 2,4, 8,12, and 32) of the final reconstruction with the MAT-
LAB® backslash operation. The figure shows that the exponential increase of the maximum error L, arises
primarily from the boundaries (see the pointwise errors with N = 32). This also implies that if there exists a
jump discontinuity inside the domain, the error also grows until its magnitude reaches O(1) in the neighbor-
hood of the discontinuity. It is useful to keep in mind that for the IPRM, the size of the transformation matrix
W is determined by the maximum polynomial order m of the final reconstruction £, (x). Let N’ be the largest
Fourier mode used for the reconstruction out of the first 2N + 1. Then m + 1 = 2N’ + 1, i.e., the total number
of the Fourier modes used for the reconstruction is a function of the polynomial order m. Thus the polynomial
order m is the crucial factor that determines the extent of the round-off errors of the transformation matrix W.
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Fig. 2. The inverse reconstruction with the Legendre polynomials for f(x) = cos[l.4n(x + 1)]. (A) L. error versus N. (B) Pointwise errors
with N =2,4,8,12,32, from top to bottom. The dotted line denotes the pointwise errors for N = 32 and the other solid lines for
N =2,4,8,12 from top to bottom. Note that we clearly see the exponential convergence even at the boundaries for N = 2,4, 8§, 12.
However, after N ~ 12, the error with the Legendre polynomials grows from the boundaries while the errors in the region away the
boundaries are still small (see figure B with N = 32).

We note in presenting these results that complement similar results in the previous papers that the [IPRM gives
a very good reconstruction for non-polynomial functions.
We propose a truncation method with Gaussian elimination in order to prevent the exponential growth of
L. To explain the truncation method, consider a function f(x) which is analytic but not periodic in
€ [~1,1]. Then its Fourier coefficients f decay algebraically slowly. However, the elements of the expansion
coefficient vector g when f'(x) is expanded in some basis set decay exponentially fast. In particular, if f(x) is a
polynomial of order p, we expect that the first p components of g are non-zero and the remainder are identi-
cally zero if the inversion, Eq. (7), could be performed exactly. Since Gaussian elimination transforms W to an
upper triangular matrix U we first define the Gaussian elimination operation P [21] such that

U=P-W (19)
and the equation to be inverted by backward substitution is

U-g=h. (20)
After Gaussian elimination, the Fourier coefficient vector f is mapped into h

h:=P-f, (21)

which decays exponentially as shown in Fig. 3 for f(x) = cos[l.4n(x + 1)]. To explain why h decays also expo-
nentially as does g, consider a test function which is a polynomial of degree m. Then we know that g, = 0 for
VI > m. Since U is an upper triangular matrix, from Eq. (20) /, = 0 identically for V/ > m.

Fig. 3 shows the variation of the components of the vectors of g, g, h and f decay. We use the same test
function f(x) = cos[l.4n(x + 1)] and Legendre polynomials for the inverse reconstruction. The exact Legendre
expansion coefficients are given by

21—|—1
/f JL(x

Fig. 3 shows that the expansion coefficients g; and the elements of the RHS vector h decay exponentially and
they have almost the same decay rate. In the figure, the exact Legendre expansion coefficients are denoted by g;
which are evaluated using quadrature rules [5]. Note that both g and h do not change but remain about 10~'¢
once the minimum value reaches €,;,. Components f + of the Fourier coefficient vector f , the RHS vector in the
linear system with the IPRM, Eq. (5) are also shown in Fig. 3 to decay algebraically slowly. After Gaussian
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Fig. 3. The variation of fi, g, /i and g; versus k or / for f(x) = cos[l.4n(x + 1)]. f’k denotes the Fourier coefficients, g, the exact Legendre
expansion coefficients, g, the approximated expansion coefficients with the IPRM and /i, the mapped Fourier coefficients. The symbols A,
O and O denote g, for N = 32,40, and 64, respectively.

elimination, the Fourier coefficient vector f is mapped into h and the decay rate is dramatically changed such
that &, decays exponentially. The figure also shows the reconstructed expansion coefficient vector g with the
IPRM denoted by g; for different N = 32 (A), 40 (), and 64 (O). As the figure shows, the expansion coef-
ficients with the IPRM also decay exponentially with the same rate as the exact expansion coefficients up
to a certain polynomial degree m,, with m, = 17,15, 11 for N = 32,40, 64, respectively. For m > m,, the decay
rates of the reconstructed expansion coefficients g; for each N depart from the exponential rates.

Here we note that the inversion of U is not involved for the evaluation of h. The major observation from the
numerical experiments is that h has an exponential decay rate but this deteriorates after the inversion of U
which is a highly ill-conditioned matrix analogous to W. That is, the mapping P transforms f into h that
decays exponentially but the following mapping U~ fails to make h exponential because U is ill-conditioned:

P fb—>h,
U!:h—g.

Note that x(U) = x(W).

Based on this observation, a simple truncation method is proposed with which the round-off errors due to
the ill-conditioned matrix U is reduced by exploiting the exponentially decaying h. We truncate h with a certain
tolerance level ¢, which is taken to be slightly larger than €,, such that

hk =0 if ‘hk| < €.

The tolerance level ¢, should be taken so as to eliminate the round-off errors due to U~ when the absolute
value of the elements of h reaches €,,. If ¢, < €, the inaccurate /;, are used for the computation of g; and con-
sequently there exists the growth of L. error. If ¢, > ¢, the errors due to the inaccurate /4, are reduced, but
the minimum L, error is only bounded by ¢, although there is no growth in L error,

In]\;nLOO ~ O(g).

We suggest that ¢, be taken close to but larger than €,,, for example, ¢, ~ 10¢,,.

Fig. 4(A) and (B) shows the L., errors versus N for f(x) = cos[l.4n(x + 1)] and f(x) = exp[sin(2.7x) +
cos(x)], respectively, both of which show the results of Gaussian elimination with and without truncation of
h. These functions were previously used in [22]. The maximum value of N is 64 with which we obtain the
expansion coefficient up to gj»s. For the truncation of h we use a tolerance level, ¢, = 1075, The line marked
with circle is the plot of the L. errors with N without the truncation of h and the line marked with [ is the plot
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Fig. 4. The variation of L., versus N arising from Gaussian elimination with partial pivoting with and without truncating h. The filled
circle symbol denotes the results without the truncation and the square symbol with the truncation. (A) f(x) = cos[l.4n(x + 1)].
(B) f(x) = explsin(2.7x) + cos(x)].

with the truncation of h. As shown in the figures, the results are remarkable. The figure shows that the L.,
errors decay with N without any growth if h is truncated. It is also shown that the predicted spectral conver-
gence with large N is obtained with machine accuracy even for f(x) = exp[sin(2.7x) 4 cos(x)] which yields a
slow convergence with the Legendre polynomial expansion. Compared to the numerical results with this func-
tion in [8,22], the truncation method proposed in this paper yields a remarkable performance without any
growth in L, error.

Various Gegenbauer polynomials Cj'(x) with different values of A are also considered with the truncation
method. We use 4 =0.5,20,60, and 120 with N = 64. Fig. 5(A) and (B) shows the L, errors for f(x) =
cos[l.4n(x + 1)] and f(x) = exp[sin(2.7x) + cos(x)] respectively. In the figures, the symbols O, [, x, and <
denote the results with the Gegenbauer polynomials with 2 = 0.5, 20, 60, and 120, respectively. The tolerance
levels for Fig. 5(A) and (B) were chosen to be ¢, = 107 and ¢, = 5 x 1073, respectively. It is well known that
with finite precision the round-off errors are severe in the computation of the Gegenbauer polynomials with
large / [9] for which the tolerance level is slightly increased from ¢, = 107", Both figures show that the L.
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Fig. 5. The L, errors with different Gegenbauer polynomials of 2= 0.5 (O), 20 (), 60 (x), and 120 (). (A) f(x) = cos[l.4n(x + 1)].
(B) f(x) = exp[sin(2.7x) + cos(x)].
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errors still decay fast without any growth even with a value of 4 as large as A = 120. Fig. 5(A) shows that the
inverse reconstruction with A = 20 yields the best results for large N. It also shows that the inverse reconstruc-
tion with 4 = 60 provides better results than the case with the Legendre polynomials, i.e. A = 0.5 for large N.
Fig. 5(B) shows that the results are almost the same for all A. These numerical results show that the proposed
truncation method yields the results of non-growing L, errors with various Gegenbauer polynomials as well.

We also compare the truncated IPRM with a filtering method which involves applying a filter function,
a(k), to the RHS h in Eq. (20) such that

U-§g—X-h,

where X = diag(a(0),(1),...,0(2N)). We use a simple exponential filter function a(k) = exp(a(k/2N)") with
o=logeyand k =0,1,...,2N. Fig. 6 shows the L., errors with N for f(x) = e“+" with the IPRM, truncated
IPRM and filtered IPRM. Here note that the x-axis is N as the even test function chosen is represented by the
Fourier cosine series and can be expanded in polynomials of only even order. The symbols x and O denote the
L, errors with the IPRM and the truncated IPRM, respectively. The truncation level ¢, for the truncated
IPRM is chosen as ¢, = 107", The filtering orders p used are, p = 32 (+), 8 (O), and 4 (A) for the filtered
IPRM. Although the filtered IPRM gives better results with increasing p, the L., error grows with N for
all filtering orders. The IPRM with p — oo is equivalent to the IPRM without the filter. The figure shows that
the truncated IPRM provides the best result.
Finally, we consider the Runge function

1
f(x) :m» x e [-1,1].

It is well known that this function yields the so-called Runge phenomenon in the polynomial interpolation
with equidistance collocation points. Here note that the Runge function is continuous and periodic in
x € [-1,1]. Thus there is no Gibbs phenomenon for this function. It is interesting, however, to apply the
IPRM with the polynomial basis to the Fourier approximation of the Runge function. In [17], it was shown
that if the function is analytic, the IPRM reconstruction of the Fourier approximation yields exponential con-
vergence in the Fourier space for large N. Fig. 7 shows the IPRM reconstruction of the Runge function. With
the same reasoning as with the test function used for the filtered IPRM, only the cosine series is used and the
reconstruction is only with the polynomials of even order. The symbols x and O denote the L, errors with the
IPRM and the truncated IPRM. For the truncated IPRM, the truncation level ¢, = 10" is used. The figure
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&s32g
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Fig. 6. The L, errors versus N for f(x) = e” " with the IPRM, truncated IPRM and filtered IPRM. The symbols x and O denote the L.,

errors with the IPRM and the truncated IPRM with ¢, = 107", respectively. For the filtered IPRM, the filtering orders p are p = 32 (+),
8 (0), and 4 (©). The truncated IPRM provides the best result.
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Fig. 7. The IRPM reconstruction of the Runge function f(x) = n%s; (x): without truncation. (O): with truncation with ¢, = 107",
shows that the L., error actually grows with N, but it decays exponentially beyond a certain N. This implies
that the IPRM indeed yields exponential convergence as N — oo. The truncated IPRM clearly shows that the
IPRM reconstruction decays without any L., growth.

4. Summary

In this note, we use the Gaussian elimination for the inversion of the transformation matrix W between
Fourier and Legendre basis functions, Eq. (6). We show that the exponential growth of the L., errors when
the round-off errors become dominant with the inverse polynomial reconstruction method is due to the ill-
posedness of the transformation matrix W and consequently due to the numerical calculation of W~'. We
show that the algebraically decaying Fourier coefficients /; are mapped to /i by the Gaussian upper triangu-
larization procedure which exhibit an exponential decay rate. The /; are mapped into g; by the inversion of the
upper triangular matrix U and do not maintain the desired exponential decay rate due to the ill-conditioned
matrix U. Based on this observation, a simple truncation method has been proposed with which we use the
truncation of h with a certain tolerance level ¢, and show that the L, errors decay exponentially with N with-
out any growth. It is also shown that the proposed truncation method yields the same performance with var-
ious Gegenbauer polynomials of different A and that the inverse reconstruction provides accurate results even
with large /. Additional numerical examples are provided for the filtered IPRM and the IPRM reconstruction
of the Runge function. From the numerical results, it is confirmed that the truncated IPRM yields the best
results for both examples. Numerical examples used in our previous works are used to confirm the resolution
of the L, error growth due to the ill-posedness of the IPRM with the proposed truncation method of h.
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